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We consider the free boundary incompressible Euler equations
vi +v-Vv =—-Vp—ge,, V-v=0, x € 4,

where g is the gravitational constant. The free surface
e = {z(a, t) : @ € R} moves with the velocity, according to the
kinematic boundary condition

(0rz — V)|, tangent to I;.
In the presence of surface tension the pressure on the interface is

given by
p(x, t) = ok(x,t), xeTly,

where k is the mean-curvature of ['; and o > 0.
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Natural questions:

e Local regularity
e Global regularity and asymptotics
e Dynamical formation of singularities

Alexandru lonescu On long-term existence of water wave models



Possible variants: Periodic conditions, finite bottom, two-fluid
model.

Local wellposedness: Nalimov (1974), Yosihara (1982), Craig
(1985), Wu (1997, 1999), Beyer—Gunther (1998),
Christodoulou-Lindblad (2000), Ambrose (2003),
Ambrose-Masmoudi (2005), Lannes (2005), Lindblad (2005),
Coutand-Shkoller (2007), Cheng—Coutand-Shkoller (2008),
Christianson—Hur=Staffilani (2010), Alazard-Burq—Zuily (2011),
Shatah—Zeng (2008, 2011).

One has local regularity if & > 0 or if the Rayleigh—Taylor
condition is satisfied. The time of existence depends on two
quantities: the smoothness, say in H'0, of the interface and the
fluid velocities, and the arc-chord constant of the interface.
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Formation of singularities: possible scenarios: (1) loss of
regularity, and (2) self-intersection of the interface.

The "splash” singularity of
Castro—Cordoba—Fefferman—Gancedo—Gomez-Serrano (new proof
of Coutand-Shkoller).

Interface at time t,,q,-€ Interface at time t,,q,

Figure 2. Formation of “splash” singularities.

e The splash singularity cannot form in the two-fluid model
(Fefferman—I.—Lie).
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Global r

Small irrotational global solutions, with either gravity or surface
tension (but not both) in 2D or 3D:

e (almost global) 2D gravity waves g > 0,0 = 0: Wu (2009)

e 3D gravity waves g > 0,0 = 0: Wu,
Germain—Masmoudi—Shatah;

e 3D capillary waves g = 0,0 > 0: Germain—Masmoudi—Shatah;
e 2D gravity waves 0 = 0,g > 0: |.-Pusateri, Alazard—Delort
(new proofs in different topologies by Hunter—Ifrim—Tataru (almost
global regularity), Ifrim—Tataru (global regularity), Wang (removal
of a momentum condition on the velocity field));

e 2D capillary waves g = 0,0 > 0: |.—Pusateri in the general case,
Ifrim—Tataru assuming one momentum condition on the
Hamiltonian variables.

e 3D gravity or capillary waves with finite bottom: Wang.

e 3D gravity waves g > 0,0 > 0: Deng—l.—Pausader—Pusateri.
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e In 2 dimensions (1D interface), there are no resonances if either
g =0 or 0 =0. An important piece of the proof is the quartic
energy inequality (Wu)

En(t) —En(0) < ‘/Ot<v>u- (Vyu - (VYN (V)N dxds|.

e Formally, it is similar to Shatah's normal form method. It is
important not to lose derivatives in the right-hand side.

e The linearized and nonlinear solution have t~1/2 pointwise
decay, which leads to almost-global existence. Global existence
relies on understanding the scattering theory, i.e. proving modified
scattering (l.-Pusateri, Alazard-Delort).

e Improvements: paradifferential energy estimates
(Alazard-Delort), compatible vector-field structures (l.-Pusateri),
modified energy method (Hunter-Ifrim-Tataru).
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e In 2 dimensions (1D interface), there are no resonances if either

g =0 or 0 =0. An important piece of the proof is the quartic
energy inequality (Wu)

En(t) —En(0) < ‘/Ot<v>u- (Vyu - (VYN (V)N dxds|.

e Formally, it is similar to Shatah's normal form method. It is
important not to lose derivatives in the right-hand side.

e The linearized and nonlinear solution have t~1/2 pointwise
decay, which leads to almost-global existence. Global existence
relies on understanding the scattering theory, i.e. proving modified
scattering (l.-Pusateri, Alazard-Delort).

e Improvements: paradifferential energy estimates
(Alazard-Delort), compatible vector-field structures (l.-Pusateri),
modified energy method (Hunter-Ifrim-Tataru).

e The quartic energy inequality was proved in other settings:
gravity constant vorticity (Ifrim-Tataru), gravity finite bottom
(Harrop-Griffith—Ifrim—Tataru).
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e In 3 dimensions (2D interface), if either g = 0 or o = 0 then
one has and 1/t pointwise decay for both the linearized solution
and the nonlinear solution. One can close the argument by letting
the highest order energy grow slowly.
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Them

Consider a generic evolution problem of the type
Oru+ iNu= N(u, Dyu)
where A is real and A is a quadratic nonlinearity. At first iteration
u(t) = e Mg,
At second iteration, assuming N = 9;(u?),

a(E, t) = e ™MOg(g)
— tAE)=A(m)—A(E—n)]
—itn©) [ Zpe o\ L€
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Them

Consider a generic evolution problem of the type
Oru+ iNu= N(u, Dyu)
where A is real and A is a quadratic nonlinearity. At first iteration
u(t) = e Mg,
At second iteration, assuming N = 9;(u?),
a(&. t) = e "NOG(¢)

— itINE)=N(n)—NA(E—n)]
CetNE) [ D(e — mamic, L€ dn.
L ce / o = Mo T — e e

One has to understand the contribution of the set of (time)
resonances:

{(&;m) - £AE) £ A(n) £ A(E —n) = 0}
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The phases corresponding to bilinear interactions satisfy the
following restricted nondegeneracy condition of the resonant
hypersurfaces: if

®(E,m) == () = A(n) £ A€ —n)

and
T(&,n) == Vi, ®(&n) [Ved(&,n), V(& n)|

then T(&, 1) # 0 at (almost all) points on the time-resonant set
d(&,n) =0.
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In the irrotational case curlv = 0, let ® denote the velocity
potential, v = V&, and let ¢(x, t) = ®(x, h(x, t), t) denote its
trace on the interface.

Main Theorem. (Deng, |., Pausader, Pusateri) If g > 0, 0 > 0,

and
H(ho, ¢0)H5uitable norm < €9 K 1

then there is a unique smooth global solution of the
gravity-capillary water-wave system in 3d, with initial data (ho, ¢),

d:h = G(h)o,

vh (G(h)o + Vh- V)

1
v = —gh + odiv - 5|V<z>\2 +

(1+|Vh[2)1/2 2(1+ [Vh[?)

where G(h) is the (normalized) Dirichlet-Neumann map associated
to the domain Q; (the Zakharov-Craig-Sulem formulation). The
solution (h, ¢)(t) decays in L at t~%/%F rate as t — oc.
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For sufficiently smooth solutions, this is a Hamiltonian system
which admits the conserved energy (Zakharov)

H(h,¢) = ;/R G(h)¢-¢dx+§/Rn1 h? dx

+0/ |Vh|2 dx
Ri-1 1+ /1+ |Vh]?

~ [[IV1Y28]) 52 + || (& — o8) A .
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For sufficiently smooth solutions, this is a Hamiltonian system
which admits the conserved energy (Zakharov)

H(h, ¢) ;:;/Rn_l G(h)¢.¢dx+§/m_l h? dx

+0/ |Vh|2 dx
Ri-1 1+ /1+ |Vh]?

~ [[IV1Y28]) 52 + || (& — o8) A .

Model equation:

(0r +iNU=VV-VU+(1/2)AV-U,  U(0) = Uy,

A(E) =/ IE] + €13, V= P_10,10RU.

which has the L2 conservation law

U2 = [[oll 2, t €0, 00).
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The specific dispersion relation A(§) = /|¢] + [€]3 is important. It
is radial and has stationary points when

€] = 0 :=1/2/V3 — 1~ 0.393. As a result, linear solutions e®¢

can only have |t|~%/® pointwise decay, even for Schwartz functions.

[ 0 [ 20 25 30

Figure: The dispersion relation A(r) = v/r3 + r and the group velocity \'.
The frequency 1 corresponds to the space-time resonant sphere.
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Resonant sets:

o 2 © C) ) 100 o7 % £ 00 o1 02 08

Figure: The first picture illustrates the resonant set

{n:0=>(&n) =NE) — A(n) — A& —n)} for a fixed large frequency ¢
(in the picture £ = (100,0)). The second picture illustrates the

intersection of a neighborhood of this resonant set with the set where
|€ — 7| is close to 7o.
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Schematically, we prove the following bootstrap proposition:

Proposition: Assume that U is a solution on some time interval
[0, T], with initial data Up. Define, as before, u(t) = e u(t).
Assume that

40l s+ leollz < 20 < 1

and

(L + )" [lu(t) m A lu(t)]z <e1 <1

”HNOHH

for all t € [0, T]. Then, for any t € [0, T]

(L+t) Plu(t) €0 using energy estimates,

HHNOQHgl 5

lu(t)lz < eo using dispersive analysis.
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e Start with an energy inequality of the form

t
En(t) — En(0) < ‘/0 /RZ DNU x DVU x Ddeds‘
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e Start with an energy inequality of the form

t
En(t) — En(0) < ‘/0 /RZ DNU x DVU x Ddeds‘

e Transfer to the Fourier space (the I-method of
Colliander—Keel-Staffilani-Takaoka-Tao), and let W = DNU

En(t) — En(0)
<| /0 /R  WEOW) O — n)m(e.n) dednat
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e Rewrite the energy increment inequality in terms of the profiles
u(t) == e™U, w(t) := e W

En(t 0)

(£) — En(
<| [ [ e amate - mme. ) dednds
0 JR2xR?
Here
O, m) = £AE) + An) £ A= —n).
The function @ (typically) has a codimension 1 vanishing set.

The profiles satisfy equations of the form (with quadratic
nonlinearities)

Oru = ™ D(e™ ™y x e~ ™y);

drw = e D(e ™y x e7 ).
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e Decompose the bulk term dyadically over time~ 2™,
frequency =~ 2k 'modulation ~ 2P,

lmoi= [ an(s) [ oo ®(€ ) m(c. )
x Pw(—&, 5)Picw(n, 5)X5o(€ — n)G(E — n, 5) dEdnds.

We could estimate this using integration by parts in time (Shatah’s
normal form method),

lemp ~ /qm / % )) e **EM m(g,n)
R2xR2

x [PkW( £, 5)Pew(, )} X0 (€ = 1, 5)U(& — ) dEdnds.
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e Decompose the bulk term dyadically over time~ 2™,
frequency =~ 2k 'modulation ~ 2P,

lmoi= [ an(s) [ oo ®(€ ) m(c. )
x Pw(—&, 5)Picw(n, 5)X5o(€ — n)G(E — n, 5) dEdnds.

We could estimate this using integration by parts in time (Shatah’s
normal form method),

C pp(P(Em) 577)) ois®(E.m)
fimo / wl®) [ oo e

x [PkW( £, 5)Pew(n, )] X (€ — 1, 5)T(E — 1) dEdnds.

For small p we estimate the integral using an L2 lemma. This is
the critical gain of the argument. It depends on the functions ¢
satisfying the "restricted nondegeneracy condition”.
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Main L2 lemma: Assume that k, m > 1,
—m+om< p—k/2< —dm, 2m-1 < |s| < pmtl

Let T, denote the operator defined by

Tof(€) = /R2 e SPEM (27PD(E, 1)) X (€ — )2k () (€, n) F (m)d,

where
(&, ) = ME) £ ME —n) — An).
Then

1Tl 22 < 29m[2m/3H(P=k/2) | 93(p=k/2)/2),
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Main L2 lemma: Assume that k, m > 1,
—m+om< p—k/2< —dm, 2m-1 < |s| < pmtl

Let T, denote the operator defined by

Tof(€) = /R2 e SPEM (27PD(E, 1)) X (€ — )2k () (€, n) F (m)d,

where
(&, ) = ME) £ ME —n) — An).
Then

1Tl 22 < 29m[2m/3H(P=k/2) | 93(p=k/2)/2),

Depends on the fact that
T(&.n) = VE,®(&n) | Ve @€, m), Vyy ®(&,m)| #0,

when ®(&,n) = 0.



This L2 lemma can be used to control the contribution of small
modulation, p — k/2 < —2m/3 — 26m. For higher modulation we

integrate by parts in time. The danger here is a potential loss of
derivative, due to the equation

drw = e D(e My x 7t w).
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This L? lemma can be used to control the contribution of small
modulation, p — k/2 < —2m/3 — 26m. For higher modulation we
integrate by parts in time. The danger here is a potential loss of
derivative, due to the equation

drw = e D(e My x 7t w).

Recall the model
(0r +iNU=VV-VU+(1/2)AV-U,  U(0) = Uy,

A(E) =/ IE] + €13, V= P_10,100RU.

The multiplier in the space-time integrals is

E=n)-(E+n) @+ AV - @+ 1gHY
2 (L4 [n[2)N/2(1 + [¢[2)N/2

m(&,n) =

which satisfies

_ . 2
m(en) So(Em).  where  o(&,n) = M (ET DI

14 [§+nf?
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The key point is the algebraic correlation
if |®(&n)| S 1 then [m(¢,n) <27%.

between the smallness of the modulation and the smallness of the
depletion factor 0.

Alexandru lonescu On long-term existence of water wave models



The key point is the algebraic correlation
if |®(&n)| S 1 then [m(¢,n) <27%.

between the smallness of the modulation and the smallness of the
depletion factor 0.

We found exactly the same algebraic correlation in the 2d
Euler—-Maxwell system for electrons (a plasma model).

Alexandru lonescu On long-term existence of water wave models



The key point is the algebraic correlation
if |®(&n)| S 1 then [m(¢,n) <27%.

between the smallness of the modulation and the smallness of the
depletion factor 0.

We found exactly the same algebraic correlation in the 2d
Euler—-Maxwell system for electrons (a plasma model).

These energy estimates can be used to control the growth of the
high order energy weighted norms

lullgn — and  ullm = sup Q0,2
Q [7N1

where Q = x10> — x201 is the rotation vector-field.
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In our (weighted) case we use Duhamel formula and the concept of
space-time resonances (Germain—Masmoudi-Shatah):

(O +iNU =D N(Us, Us),
+

where Uy = U, U_ = U, and the nonlinearities are defined by

(FN(f.g)) / (€ n)F(E — g (n) dn.

With u(t) = e U(t), the Duhamel formula is

t .
a(g, 1) =u(s, 00+ y /O =& Mm(¢, n)az(§ — n, s)a=(n, s) dnds.
+
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Critical points (spacetime resonances): with

(& n) = NE) £ A(n) = A& —n)

the set of space-time resonances is

{(&m) : ®(&,m) =0and V,®(¢,n) = 0}

In our case
(67 77) = (Vlwv Vlw/2)7

where w € St and 1 = V2.
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Critical points (spacetime resonances): with

(& m) = AE) = A(n) =AE —n)

the set of space-time resonances is

{(&m) : ®(&,m) =0and V,®(¢,n) = 0}

In our case
(67 77) = (Vlwv Vlw/2)7

where w € St and 1 = V2.

If we input Schwartz functions into the Duhamel formula, we get a
different type of output,

~sm (27 ([§] —11)),

coming from the contribution when s ~ 27,
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We define
Qikf = pj(x)Pif(x).
We define

Hf”z = sup sup ||Danijf”Bf7
(kj)ET |a]<50, m<Ny /2

where

lgllgy : = 20720W2m (/224900 A g .

The operators A, are projection operators relative to the location
of the spheres of space-time resonances, ||¢| —v1| =~ 27".
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We define
Qikf = pj(x)Pif(x).
We define

Hf”z = sup sup ||Danijf”Bf7
(kj)ET |a]<50, m<Ny /2

where

lgllgy : = 20720W2m (/224900 A g .

The operators A, are projection operators relative to the location
of the spheres of space-time resonances, ||¢| —v1| =~ 27".

Our Z norm depends in a significant way on both the linear part
and the quadratic part of the equation. Norms of this type were
introduced in work on the Euler—-Maxwell equations in 3d.
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Elements of the proof:

e time resonance
®(&,n) =0;
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Elements of the proof:

e time resonance
®(&,n) =0;

e space-time resonance (dispersive analysis)

(D(gvn) = O and vﬁ¢(£>n) = 0

e nondegenerate space-time resonance (dispersive analysis)

V%CD({, n)  non-singular at space-time resonances.
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e restricted nondegenerate time resonance (energy method)

OEm) =0, T(&m) = VE,B(En) [VER(En), V(&) #0.
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e restricted nondegenerate time resonance (energy method)

OEm) =0, T(&m) = VE,B(En) [VER(En), V(&) #0.

e algebraic correlation between multipliers and modulation

if [®(&n)| S1 then [m(&,m)| S (L+[¢]+[n)~

Alexandru lonescu On long-term existence of water wave models



e restricted nondegenerate time resonance (energy method)

OEm) =0, T(&m) = VE,B(En) [VER(En), V(&) #0.

e algebraic correlation between multipliers and modulation

if [®(& ) S 1 then [m(&,m)| < (1+ I+ )~

e The solution scatters in the Z norm. However,

a(¢,t)| 2 e log(2+8)  if [¢] =,

for solutions starting from small Schwartz data.
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e "slow propagation of iterated resonances”: if
b(&,m,0) = (&, 1) + D(n, 0)
then
if V,o®(&,m,0) =0 and |®(&,7,0)| < 1 then Ve®(&,n,0) = 0.

The corresponding property for (quadratic) space-time resonances
fails

if V,®(¢,71) = 0 and ®(&,n) = 0 then [Ved(&,n)| > 1.
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e "slow propagation of iterated resonances”: if
b(&,m,0) = (&, 1) + D(n, 0)
then
if V,o®(&,m,0) =0 and |®(&,7,0)| < 1 then Ve®(&,n,0) = 0.

The corresponding property for (quadratic) space-time resonances
fails

if V,®(¢,71) = 0 and ®(&,n) = 0 then [Ved(&,n)| > 1.

e The important spheres of radius 7o, 270,71, 71/2 are separated.
Related separation conditions and properties of iterated resonances
were used by Germain—Masmoudi.
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e Compatible vector-field structures: only certain combinations of
vector fields can be propagated through energy estimates:

HNo o 1N, No =~ 2N; ~ 4000.
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e Compatible vector-field structures: only certain combinations of
vector fields can be propagated through energy estimates:

HNo N No ~ 2N; ~ 4000.
e Analysis of "almost radial” functions: in the dispersive part of

the argument we can pretend that our profiles are almost radial.
This leads to "illegal” estimates such as

(1 + t)lle™" " Paway from rof Il S [I(1+ [x[)Y/2F]| 2.

These are similar to Klainerman—Sobolev inequalities.
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e Compatible vector-field structures: only certain combinations of
vector fields can be propagated through energy estimates:

HNo N No ~ 2N; ~ 4000.

e Analysis of "almost radial” functions: in the dispersive part of
the argument we can pretend that our profiles are almost radial.
This leads to "illegal” estimates such as

(1 + t)lle™" " Paway from rof Il S [I(1+ [x[)Y/2F]| 2.

These are similar to Klainerman—Sobolev inequalities.

e We can see all of these issues in the simpler model

@ +iINU=VV -VU+(1/2AV U,  U0) = Uy,
A(E) = /1€l + €13, V= P_10,19%U.
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