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The water wave equations

We consider the free boundary incompressible Euler equations

vt + v · ∇v = −∇p − gen, ∇ · v = 0, x ∈ Ωt ,

where g is the gravitational constant. The free surface
Γt = {z(α, t) : α ∈ R} moves with the velocity, according to the
kinematic boundary condition

(∂tz − v)|Γt tangent to Γt .

In the presence of surface tension the pressure on the interface is
given by

p(x , t) = σκ(x , t), x ∈ Γt ,

where κ is the mean-curvature of Γt and σ > 0.
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Natural questions:

• Local regularity
• Global regularity and asymptotics
• Dynamical formation of singularities
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Possible variants: Periodic conditions, finite bottom, two-fluid
model.

Local wellposedness: Nalimov (1974), Yosihara (1982), Craig
(1985), Wu (1997, 1999), Beyer–Gunther (1998),
Christodoulou–Lindblad (2000), Ambrose (2003),
Ambrose–Masmoudi (2005), Lannes (2005), Lindblad (2005),
Coutand–Shkoller (2007), Cheng–Coutand–Shkoller (2008),
Christianson–Hur–Staffilani (2010), Alazard–Burq–Zuily (2011),
Shatah–Zeng (2008, 2011).

One has local regularity if σ > 0 or if the Rayleigh–Taylor
condition is satisfied. The time of existence depends on two
quantities: the smoothness, say in H10, of the interface and the
fluid velocities, and the arc-chord constant of the interface.
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Formation of singularities: possible scenarios: (1) loss of
regularity, and (2) self-intersection of the interface.

The ”splash” singularity of
Castro–Cordoba–Fefferman–Gancedo–Gomez-Serrano (new proof
of Coutand–Shkoller).

Interface at time tsplash-ϵ Interface at time tsplash 

Figure 2. Formation of “splash” singularities. 

• The splash singularity cannot form in the two-fluid model
(Fefferman–I.–Lie).
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Global regularity

Small irrotational global solutions, with either gravity or surface
tension (but not both) in 2D or 3D:

• (almost global) 2D gravity waves g > 0, σ = 0: Wu (2009)
• 3D gravity waves g > 0, σ = 0: Wu,
Germain–Masmoudi–Shatah;
• 3D capillary waves g = 0, σ > 0: Germain–Masmoudi–Shatah;
• 2D gravity waves σ = 0, g > 0: I.–Pusateri, Alazard–Delort
(new proofs in different topologies by Hunter–Ifrim–Tataru (almost
global regularity), Ifrim–Tataru (global regularity), Wang (removal
of a momentum condition on the velocity field));
• 2D capillary waves g = 0, σ > 0: I.–Pusateri in the general case,
Ifrim–Tataru assuming one momentum condition on the
Hamiltonian variables.
• 3D gravity or capillary waves with finite bottom: Wang.
• 3D gravity waves g > 0, σ > 0: Deng–I.–Pausader–Pusateri.
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• In 2 dimensions (1D interface), there are no resonances if either
g = 0 or σ = 0. An important piece of the proof is the quartic
energy inequality (Wu)

EN(t)− EN(0) .
∣∣∣ ∫ t

0
〈∇〉u · 〈∇〉u · 〈∇〉Nu · 〈∇〉Nu dxds

∣∣∣.
• Formally, it is similar to Shatah’s normal form method. It is
important not to lose derivatives in the right-hand side.
• The linearized and nonlinear solution have t−1/2 pointwise
decay, which leads to almost-global existence. Global existence
relies on understanding the scattering theory, i.e. proving modified
scattering (I.-Pusateri, Alazard-Delort).
• Improvements: paradifferential energy estimates
(Alazard-Delort), compatible vector-field structures (I.-Pusateri),
modified energy method (Hunter-Ifrim-Tataru).
• The quartic energy inequality was proved in other settings:
gravity constant vorticity (Ifrim-Tataru), gravity finite bottom
(Harrop-Griffith–Ifrim–Tataru).
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• In 3 dimensions (2D interface), if either g = 0 or σ = 0 then
one has and 1/t pointwise decay for both the linearized solution
and the nonlinear solution. One can close the argument by letting
the highest order energy grow slowly.
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The ”division” problem

Consider a generic evolution problem of the type

∂tu + iΛu = N (u,Dxu)

where Λ is real and N is a quadratic nonlinearity. At first iteration

u(t) = e−itΛφ.

At second iteration, assuming N = ∂1(u2),

û(ξ, t) = e−itΛ(ξ)φ̂(ξ)

+ Ce−itΛ(ξ)

∫
φ̂(ξ − η)φ̂(η)iξ1

1− e it[Λ(ξ)−Λ(η)−Λ(ξ−η)]

Λ(ξ)− Λ(η)− Λ(ξ − η)
dη.

One has to understand the contribution of the set of (time)
resonances:

{(ξ, η) : ±Λ(ξ)± Λ(η)± Λ(ξ − η) = 0}.
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The phases corresponding to bilinear interactions satisfy the
following restricted nondegeneracy condition of the resonant
hypersurfaces: if

Φ(ξ, η) := ±Λ(ξ)± Λ(η)± Λ(ξ − η)

and
Υ(ξ, η) := ∇2

ξ,ηΦ(ξ, η)
[
∇⊥ξ Φ(ξ, η),∇⊥η Φ(ξ, η)

]
,

then Υ(ξ, η) 6= 0 at (almost all) points on the time-resonant set
Φ(ξ, η) = 0.
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In the irrotational case curl v = 0, let Φ denote the velocity
potential, v = ∇Φ, and let φ(x , t) = Φ(x , h(x , t), t) denote its
trace on the interface.

Main Theorem. (Deng, I., Pausader, Pusateri) If g > 0, σ > 0,
and

‖(h0, φ0)‖Suitable norm ≤ ε0 � 1

then there is a unique smooth global solution of the
gravity-capillary water-wave system in 3d, with initial data (h0, φ0),
∂th = G (h)φ,

∂tφ = −gh + σdiv
[ ∇h

(1 + |∇h|2)1/2

]
− 1

2
|∇φ|2 +

(G (h)φ+∇h · ∇φ)2

2(1 + |∇h|2)
.

where G (h) is the (normalized) Dirichlet-Neumann map associated
to the domain Ωt (the Zakharov-Craig-Sulem formulation). The
solution (h, φ)(t) decays in L∞ at t−5/6+ rate as t →∞.
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For sufficiently smooth solutions, this is a Hamiltonian system
which admits the conserved energy (Zakharov)

H(h, φ) :=
1

2

∫
Rn−1

G (h)φ · φ dx +
g

2

∫
Rn−1

h2 dx

+ σ

∫
Rn−1

|∇h|2

1 +
√

1 + |∇h|2
dx

≈
∥∥|∇|1/2φ

∥∥2

L2 +
∥∥(g − σ∆)1/2h

∥∥2

L2 .

Model equation:

(∂t + iΛ)U = ∇V · ∇U + (1/2)∆V · U, U(0) = U0,

Λ(ξ) :=
√
|ξ|+ |ξ|3, V := P[−10,10]<U.

which has the L2 conservation law

‖U(t)‖L2 = ‖U0‖L2 , t ∈ [0,∞).
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The specific dispersion relation Λ(ξ) =
√
|ξ|+ |ξ|3 is important. It

is radial and has stationary points when

|ξ| = γ0 :=
√

2/
√

3− 1 ≈ 0.393. As a result, linear solutions e itΛφ

can only have |t|−5/6 pointwise decay, even for Schwartz functions.

Figure: The dispersion relation λ(r) =
√
r3 + r and the group velocity λ′.

The frequency γ1 corresponds to the space-time resonant sphere.
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Resonant sets:
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Figure: The first picture illustrates the resonant set
{η : 0 = Φ(ξ, η) = Λ(ξ)− Λ(η)− Λ(ξ − η)} for a fixed large frequency ξ
(in the picture ξ = (100, 0)). The second picture illustrates the
intersection of a neighborhood of this resonant set with the set where
|ξ − η| is close to γ0.
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Schematically, we prove the following bootstrap proposition:

Proposition: Assume that U is a solution on some time interval
[0,T ], with initial data U0. Define, as before, u(t) = e itΛu(t).
Assume that

‖u0‖HN0∩HN1
Ω

+ ‖u0‖Z ≤ ε0 � 1

and
(1 + t)−p0‖u(t)‖

HN0∩HN1
Ω

+ ‖u(t)‖Z ≤ ε1 � 1

for all t ∈ [0,T ]. Then, for any t ∈ [0,T ]

(1 + t)−p0‖u(t)‖
HN0∩HN1

Ω

. ε0 using energy estimates,

‖u(t)‖Z . ε0 using dispersive analysis.

Alexandru Ionescu On long-term existence of water wave models



Energy estimates

• Start with an energy inequality of the form

EN(t)− EN(0) ≤
∣∣∣ ∫ t

0

∫
R2

DNU × DNU × DU dxds
∣∣∣

• Transfer to the Fourier space (the I-method of
Colliander–Keel–Staffilani–Takaoka–Tao), and let W = DNU

EN(t)− EN(0)

≤
∣∣∣ ∫ t

0

∫
R2×R2

Ŵ (−ξ)Ŵ (η)Û(ξ − η)m(ξ, η) dξdηdt
∣∣∣
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• Rewrite the energy increment inequality in terms of the profiles
u(t) := e itΛU, w(t) := e itΛW

EN(t)− EN(0)

≤
∣∣∣ ∫ t

0

∫
R2×R2

e isΦ(ξ,η)ŵ(−ξ)ŵ(η)û(ξ − η)m(ξ, η) dξdηds
∣∣∣

Here
Φ(ξ, η) = ±Λ(ξ)± Λ(η)± Λ(−ξ − η).

The function Φ (typically) has a codimension 1 vanishing set.

The profiles satisfy equations of the form (with quadratic
nonlinearities)

∂tu = e itΛD(e−itΛu × e−itΛu);

∂tw = e itΛD(e−itΛu × e−itΛw).
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• Decompose the bulk term dyadically over time≈ 2m,
frequency≈ 2k , modulation≈ 2p,

Ik,m,p :=

∫
R
qm(s)

∫
R2×R2

ϕp(Φ(ξ, η))e isΦ(ξ,η)m(ξ, η)

× P̂kw(−ξ, s)P̂kw(η, s)χγ0(ξ − η)û(ξ − η, s) dξdηds.

We could estimate this using integration by parts in time (Shatah’s
normal form method),

Ik,m,p ≈
∫
R
qm(s)

∫
R2×R2

ϕp(Φ(ξ, η))

Φ(ξ, η)
e isΦ(ξ,η)m(ξ, η)

× d

ds

[
P̂kw(−ξ, s)P̂kw(η, s)

]
χγ0(ξ − η, s)û(ξ − η) dξdηds.

For small p we estimate the integral using an L2 lemma. This is
the critical gain of the argument. It depends on the functions Φ
satisfying the ”restricted nondegeneracy condition”.

Alexandru Ionescu On long-term existence of water wave models



• Decompose the bulk term dyadically over time≈ 2m,
frequency≈ 2k , modulation≈ 2p,

Ik,m,p :=

∫
R
qm(s)

∫
R2×R2

ϕp(Φ(ξ, η))e isΦ(ξ,η)m(ξ, η)

× P̂kw(−ξ, s)P̂kw(η, s)χγ0(ξ − η)û(ξ − η, s) dξdηds.
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Main L2 lemma: Assume that k ,m� 1,

−m + δm ≤ p − k/2 ≤ −δm, 2m−1 ≤ |s| ≤ 2m+1.

Let Tp denote the operator defined by

Tpf (ξ) :=

∫
R2

e isΦ(ξ,η)χ(2−pΦ(ξ, η))χγ0(ξ−η)ϕk(η)a(ξ, η)f (η)dη,

where
Φ(ξ, η) = Λ(ξ)± Λ(ξ − η)− Λ(η).

Then

‖Tp‖L2→L2 . 2δm[2−m/3+(p−k/2) + 23(p−k/2)/2].

Depends on the fact that

Υ(ξ, η) := ∇2
ξ,ηΦ(ξ, η)

[
∇⊥ξ Φ(ξ, η),∇⊥η Φ(ξ, η)

]
6= 0,

when Φ(ξ, η) = 0.
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This L2 lemma can be used to control the contribution of small
modulation, p − k/2 ≤ −2m/3− 2δm. For higher modulation we
integrate by parts in time. The danger here is a potential loss of
derivative, due to the equation

∂tw = e itΛD(e−itΛu × e−itΛw).

Recall the model

(∂t + iΛ)U = ∇V · ∇U + (1/2)∆V · U, U(0) = U0,

Λ(ξ) :=
√
|ξ|+ |ξ|3, V := P[−10,10]<U.

The multiplier in the space-time integrals is

m(ξ, η) =
(ξ − η) · (ξ + η)

2

(1 + |η|2)N − (1 + |ξ|2)N

(1 + |η|2)N/2(1 + |ξ|2)N/2
.

which satisfies

m(ξ, η) . d(ξ, η), where d(ξ, η) :=
[(ξ − η) · (ξ + η)]2

1 + |ξ + η|2
.
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The key point is the algebraic correlation

if |Φ(ξ, η)| . 1 then |m(ξ, η)| . 2−k .

between the smallness of the modulation and the smallness of the
depletion factor d.

We found exactly the same algebraic correlation in the 2d
Euler–Maxwell system for electrons (a plasma model).

These energy estimates can be used to control the growth of the
high order energy weighted norms

‖u‖HN0 and ‖u‖
H

N1
Ω

:= sup
b∈[0,N1]

‖Ωbu‖L2

where Ω = x1∂2 − x2∂1 is the rotation vector-field.
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Dispersive estimates

In our (weighted) case we use Duhamel formula and the concept of
space-time resonances (Germain–Masmoudi–Shatah):

(∂t + iΛ)U =
∑
±
N (U±,U±),

where U+ = U, U− = U, and the nonlinearities are defined by

(FN (f , g)) (ξ) =

∫
R2

m(ξ, η)f̂ (ξ − η)ĝ(η) dη.

With u(t) = e itΛU(t), the Duhamel formula is

û(ξ, t) =û(ξ, 0) +
∑
±

∫ t

0
e isΦ(ξ,η)m(ξ, η)û±(ξ − η, s)û±(η, s) dηds.
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Critical points (spacetime resonances): with

Φ(ξ, η) = Λ(ξ)± Λ(η)± Λ(ξ − η)

the set of space-time resonances is

{(ξ, η) : Φ(ξ, η) = 0 and ∇ηΦ(ξ, η) = 0}.

In our case
(ξ, η) = (γ1ω, γ1ω/2),

where ω ∈ S1 and γ1 =
√

2.

If we input Schwartz functions into the Duhamel formula, we get a
different type of output,

≈δm ϕ(2m(|ξ| − γ1)),

coming from the contribution when s ≈ 2m.
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We define
Qjk f := ϕj(x)Pk f (x).

We define

‖f ‖Z := sup
(k,j)∈J

sup
|α|≤50,m≤N1/2

‖DαΩmQjk f ‖Bσ
j
,

where

‖g‖Bσ
j

: = 2(1−50δ)j2−(1/2−49δ)n‖Ang‖L2 .

The operators An are projection operators relative to the location
of the spheres of space-time resonances, ||ξ| − γ1| ≈ 2−n.

Our Z norm depends in a significant way on both the linear part
and the quadratic part of the equation. Norms of this type were
introduced in work on the Euler–Maxwell equations in 3d.
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Elements of the proof:

• time resonance
Φ(ξ, η) = 0;

• space-time resonance (dispersive analysis)

Φ(ξ, η) = 0 and ∇ηΦ(ξ, η) = 0.

• nondegenerate space-time resonance (dispersive analysis)

∇2
ηΦ(ξ, η) non-singular at space-time resonances.
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• restricted nondegenerate time resonance (energy method)

Φ(ξ, η) = 0, Υ(ξ, η) := ∇2
ξ,ηΦ(ξ, η)

[
∇⊥ξ Φ(ξ, η),∇⊥η Φ(ξ, η)

]
6= 0.

• algebraic correlation between multipliers and modulation

if |Φ(ξ, η)| . 1 then |m(ξ, η)| . (1 + |ξ|+ |η|)−1.

• The solution scatters in the Z norm. However,

|û(ξ, t)| & ε2 log(2 + t) if |ξ| = γ1,

for solutions starting from small Schwartz data.
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• ”slow propagation of iterated resonances”: if

Φ̃(ξ, η, σ) = Φ(ξ, η) + Φ(η, σ)

then

if ∇η,σΦ̃(ξ, η, σ) = 0 and |Φ̃(ξ, η, σ)| � 1 then ∇ξΦ̃(ξ, η, σ) = 0.

The corresponding property for (quadratic) space-time resonances
fails

if ∇ηΦ(ξ, η) = 0 and Φ(ξ, η) = 0 then |∇ξΦ̃(ξ, η)| & 1.

• The important spheres of radius γ0, 2γ0, γ1, γ1/2 are separated.
Related separation conditions and properties of iterated resonances
were used by Germain–Masmoudi.
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• Compatible vector-field structures: only certain combinations of
vector fields can be propagated through energy estimates:

HN0 ∩ HN1
Ω , N0 ≈ 2N1 ≈ 4000.

• Analysis of ”almost radial” functions: in the dispersive part of
the argument we can pretend that our profiles are almost radial.
This leads to ”illegal” estimates such as

(1 + t)‖e−itΛPaway from γ0f ‖L∞ . ‖(1 + |x |)1/2+f ‖L2 .

These are similar to Klainerman–Sobolev inequalities.

• We can see all of these issues in the simpler model

(∂t + iΛ)U = ∇V · ∇U + (1/2)∆V · U, U(0) = U0,

Λ(ξ) :=
√
|ξ|+ |ξ|3, V := P[−10,10]<U.
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